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Abstract

Several researchers have shown that constraints can improve
the results of a variety of clustering algorithms. However,
there can be a large variation in this improvement, even for a
fixed number of constraints for a given data set. We present
the first attempt to provide insight into this phenomenon by
characterizing two constraint set properties: informativeness
and coherence. We show that these measures can help ex-
plain why some constraint sets are more beneficial to clus-
tering algorithms than others. Since they can be computed
prior to clustering, these measures can aid in deciding which
constraints to use in practice.

Introduction and Motivation
The last five years have seen extensive work on incor-
porating instance-level constraints into clustering meth-
ods (Wagstaffet al. 2001; Klein, Kamvar, & Manning 2002;
Xing et al. 2003; Bilenko, Basu, & Mooney 2004; Bar-Hillel
et al. 2005). Instance-level constraints specify that two
items must be placed into the same cluster (must-link, ML)
or different clusters (cannot-link, CL). This semi-supervised
approach has led to improved performance on several real-
world applications, such as noun phrase coreference resolu-
tion and GPS-based map refinement (Wagstaffet al. 2001),
person identification from surveillance camera clips (Bar-
Hillel et al. 2005) and landscape detection from hyperspec-
tral data (Lu & Leen 2005).

However, the common practice of presenting results using
learning curves, which average performance over multiple
constraint sets of the same size, obscures important details.
For example, we took four UCI data sets (Blake & Merz
1998) and generated 1000 randomly selected constraint sets,
each containing 25 constraints. We then clustered each data
set with COP-KMeans (Wagstaffet al. 2001), using the
same initialization for each clustering run. We observed that,
even when the number of constraints is fixed, the accuracy
of the output partition measured using the Rand Index (Rand
1971) varies greatly, by 6 to 10% (Table 1). Since the start-
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Constrained Accuracy Unconstrained
Data set Min Mean Max Mean
Glass 66.3 70.3 74.0 69.0
Ionosphere 56.6 59.3 62.6 58.6
Iris 83.6 88.2 93.4 84.7
Wine 67.4 70.8 74.5 70.2

Table 1: Variation in accuracy (Rand Index) obtained by
COP-KMeans using 25 randomly generated constraints and
a fixed starting point, over 1000 trials.

ing point for each run was held fixed, the only source of
variation was the constraint set itself.

In fact, we found that although the average constrained
accuracy exceeds that of the average unconstrained accu-
racy, as expected, we observe that the constrained results
can produce results that are significantly worse than not us-
ing constraints at all (compare “min” column to rightmost
column in Table 1). This occurs even though the constraints
are noise-free. Our focus in this work has been to explain
this phenomenon and to offer ways to estimate the utility
of a given constraint set. We have identified two constraint
set properties that help explain these variations:informative-
ness andcoherence.

Quantifying Informativeness and Coherence
Informativeness refers to the amount of information in the
constraint set that the algorithm cannot determine on its own.
Given an algorithmA, we generate partitionPA by running
A on the data set without any constraints. We then calculate
the fraction of constraints in constraint setC that are unsat-
isfied byPA. If every constraint inC can be satisfied byA’s
default behavior, thenC has 0 informativeness forA. On the
other hand, ifC contains several constraints thatA cannot
guess on its own, then it is very informative.

Coherence is the amount of agreement between the con-
straints in setC, given a distance metricD. It is not algo-
rithm dependent. An ML (or CL) constraint can be viewed
as imposing an attractive (or repulsive) force in the feature
space within its vicinity. Two constraints are perfectly co-
herent if they are orthogonal to each other and incoherent if
they are parallel to each other. To determine the coherence of
two constraints,c1 andc2, we compute theirprojected over-
lap, or how much the projection ofc1 along the direction of
c2 overlaps with (interferes with)c2. We define coherence
as the fraction of ML–CL constraint pairs in the set that have
zero projected overlap.



Mean performance gain/loss Informativeness
Data Set CKM PKM MKM MPKM ICKM IPKM IMKM IMPKM COH
Glass 1.3 25.2 17.0 28.3 0.28 0.44 0.51 0.50 0.70
Ionosphere 0.7 -1.0 0.0 -1.0 0.41 0.41 0.42 0.42 0.65
Iris 3.5 4.0 5.5 2.9 0.12 0.12 0.11 0.11 0.94
Wine 0.6 0.4 -1.9 -2.6 0.30 0.27 0.06 0.06 0.77

Table 2: Average performance gain (or loss) for four constrained clustering algorithms, using 1000 randomly generated25-
constraint sets. The right side of the table reports the average informativeness (I) and coherence (COH) values of these sets.

Experimental Results
To understand how these constraint set properties affect var-
ious algorithms, we conducted the same experiment with
1000 randomly generated 25-constraint sets using four dif-
ferent constrained clustering algorithms. The two most com-
mon approaches to constrained clustering involve either sat-
isfying the constraints directly or learning a distance metric
that accommodates the constraints. We compared a repre-
sentative of each approach and a hybrid method that per-
forms both functions: (1) COP-KMeans (CKM): hard con-
straint satisfaction in KMeans (Wagstaffet al. 2001); (2)
PC-KMeans (PKM): soft constraint satisfaction (Bilenko,
Basu, & Mooney 2004); (3) M-KMeans (MKM): met-
ric learning from constraints (Bilenko, Basu, & Mooney
2004); and (4) MPC-KMeans (MPKM): hybrid approach,
performing both soft constraint satisfaction and metric learn-
ing (Bilenko, Basu, & Mooney 2004).

First, we report the mean performance gain (or loss) in
terms of Rand Index that was achieved by each algorithm
with each data set (left side of Table 2). We see that even
the average results can indicate a negative impact from the
constraints, for some algorithms. PKM, MKM, and MPKM
attain very large improvements when using constraints with
the Glass data set (17–28%) because their default uncon-
strained performance is very low. The right side of Table 2
shows the average informativeness and coherence for each
algorithm and data set.1 We see that the large increases in
performance for PKM, MKM, and MPKM for the Glass data
set correspond to high informativeness values (higher than
that for CKM with Glass, which demonstrates only a mod-
est increase in accuracy). However, high informativeness is
not sufficient for predicting accuracy improvement, as the
results for Ionosphere indicate. The Ionosphere constraints,
although informative, also tend to have lower coherence than
any other data set’s constraints. Incoherent sets are difficult
to completely satisfy, and we see this reflected in the lack
of significant improvement when using constraints with this
data set. Conversely, the Iris constraints have very high co-
herence (0.94) but low informativeness, leading to the mod-
est (but positive) average effect on performance for all al-
gorithms. The Wine constraints have a remarkable lack of
informativeness for MKM and MPKM, so even though the
coherence of the constraint set is reasonably high (0.77), the
23% of constraint pairs that are incoherent dominates perfor-
mance and explains the small decrease in average accuracy.

1Recall that informativeness is different for each algorithm,
while coherence is a property of the constraints and the distance
metric; here, Euclidean distance was used.

Conclusions and Future Work
We have proposed two measures of constraint set proper-
ties, informativeness and coherence, than can help explain
the variations in constrained clustering behavior we observe.
Identifying meaningful constraint set properties is of benefit
to practitioners and researchers. For scenarios in which the
user can generate multiple constraint sets, these results rec-
ommend selecting the set with the highest informativeness
and coherence values to avoid situations in which the con-
straints may negatively impact performance. Our measures
can also potentially be used to prune noisy constraints or to
actively choose constraints. We intend to explore these op-
tions in the future. We also plan to generalize our definition
of coherence to non-metric distance measures and to explore
the use of coherence as a guide in selecting the most appro-
priate distance metric for a given data set. Further, these
measures can provide insight into the black-box computa-
tion of different metric-learning constrained clusteringalgo-
rithms. Since these methods modify the distance metric, the
concept of coherence helps explain why they are so effec-
tive: they implicitly increase coherence as they iterate. This
effect is now quantifiable, and an experimental evaluation of
how coherence changes as the algorithm iterates is likely to
increase our understanding of metric-learning methods.
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